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a b s t r a c t

Rainbow trout gill epithelial cells (RTgill-W1) are used in a cell-based biosensor that can respond within
one hour to toxic chemicals that have the potential to contaminate drinking water supplies. RTgill-W1
cells seeded on enclosed fluidic biochips and monitored using electric cell-substrate impedance sensing
(ECIS) technology responded to 18 out of the 18 toxic chemicals tested within one hour of exposure. Nine
of these chemical responses were within established concentration ranges specified by the U.S. Army for
comparison of toxicity sensors for field application. The RTgill-W1 cells remain viable on the biochips at
ambient carbon dioxide levels at 6 �C for 78 weeks without media changes. RTgill-W1 biochips stored in
this manner were challenged with 9.4 lM sodium pentachlorophenate (PCP), a benchmark toxicant, and
impedance responses were significant (p < 0.001) for all storage times tested. This poikilothermic cell line
has toxicant sensitivity comparable to a mammalian cell line (bovine lung microvessel endothelial cells
(BLMVECs)) that was tested on fluidic biochips with the same chemicals. In order to remain viable, the
BLMVEC biochips required media replenishments 3 times per week while being maintained at 37 �C.
The ability of RTgill-W1 biochips to maintain monolayer integrity without media replenishments for
78 weeks, combined with their chemical sensitivity and rapid response time, make them excellent can-
didates for use in low cost, maintenance-free field-portable biosensors.

Published by Elsevier Ltd.

1. Introduction

The protection of drinking water supplies from the threat of
accidental or deliberate contamination with toxic chemicals is a
concern for both the military and civilian sectors. Modern methods
of analytical chemistry can detect and identify a wide array of inor-
ganic and organic compounds with accuracy and precision, but
thorough analysis requires complex instrumentation used away
from the site of field sampling, and there is usually a time delay
of hours to days until results can be obtained. These methods are
usually not practical, timely, or cost-effective for field testing of
water supplies where time-to-results may be critical.

A wide array of biosensors are available that utilize antibodies,
enzymes, and nucleic acids for detection of chemicals in water,
(Pancrazio et al., 1999; States et al., 2003; Kelly et al., 2008; Rear-
don et al., 2009) but they are analyte-specific, thus requiring a
large number of biosensors for responsiveness to a wide range of
chemicals. Toxicity sensors offer an alternative approach to evalu-

ating drinking water for the presence of chemical contaminants. A
review of vertebrate cell-based biosensors indicates that metabo-
lism, impedance, and intra- and extra-cellular potentials can be
used for detection of chemical toxicity (Pancrazio et al., 1999;
van der Schalie et al., 2006). Some of these sensors have been
shown to respond to a broad range of chemical contaminants,
including mixtures and unknown compounds, and thus have great
potential for use as rapid indicators of chemical contaminants in
drinking water supplies (O’Shaughnessy et al., 2004; Iuga et al.,
2009; Eltzov and Marks, 2010).

The concept of using the measurement of electrical impedance
of cell monolayers as a possible toxicity sensor, which is also
known as electric cell substrate impedance sensing (ECIS), was first
described by Giaever and Keese (1992). Cellular impedance has
been shown to be a sensitive indicator of cell viability and cytotox-
icity (Giaever and Keese, 1993; Curtis et al., 2009a; Keese et al.,
1998; Xing et al., 2005, 2006). Other investigators have found
excellent correlation between cellular impedance and other toxic-
ity endpoints such as tetrazolium dye and neutral red uptake as-
says (Xing et al., 2006).

ECIS is based on the principle that a confluent monolayer of
cells impedes the flow of electricity. Impedance measurements
correlate with changes in cellular morphology, movements and
functions, and activation of signaling pathways, and has been
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described extensively (Giaever and Keese, 1993; Xiao and Luong,
2003; DeBusschere and Kovacs, 2001; Narakathu et al., 2010).
When the integrity of the cell monolayer is compromised (as by
a toxic chemical injury), the ECIS sensor records a change in elec-
trical impedance (Curtis et al., 2009a; Keese et al., 1998; Xing
et al., 2005, 2006). Although mammalian cell lines have success-
fully detected toxic compounds and may more closely reflect hu-
man physiology than non-mammalian cells, they are more
difficult to maintain since they require an incubation temperature
of 37 �C, artificial levels of 5–10% carbon dioxide, and frequent
media replenishment (Curtis et al., 2009a,b). Curtis et al. (2009b)
describe a compact, self-contained disposable cell maintenance
system (CMS) for supporting the health of mammalian cells on flu-
idic biochips for up to 30 days. The CMS eliminates the need for a
cell culture facility to be on-site where testing is being done.
Although fully automated, the CMS has limitations for field use,
including relatively short viability of cells on the biochips, and
the large size and weight of the device.

Rainbow trout gill epithelial cells (RTgill-W1) are a promising
alternative to mammalian cells for use in toxicity sensor
applications. Lee et al. (2009) provides a review of the extensive
applications of RTgill-W1 cells in toxicology as well as basic re-
search. These cells form a monolayer on fluidic biochips (Glawdel
et al., 2009; Hondroulis et al., 2010), can be cultured at ambient
CO2 levels (Bols et al., 1994), and can survive over a wide range of
temperatures (4–25 �C), with optimal growth occurring at
20 ± 2 �C (Dayeh et al., 2005b). RTgill-W1 cells have been utilized
extensively in in vitro toxicity testing with fluorescent indicator
dye assays in traditional multiwell plates (Dayeh et al., 2005a,c), as
well as in microfluidic biochips (Glawdel et al., 2009). RTgill-W1
cells have been found to be sensitive to different classes of com-
pounds, including polybrominated diphenyls (Shao et al., 2008,
2010), ammonia (Dayeh et al., 2009), copper (Bopp et al., 2008), poly-
cyclic aromatic hydrocarbons (Schirmer et al., 1998), industrial
effluents (Dayeh et al., 2002), and nanoparticles (Kühnel et al.,
2009). Recently, the RTgill-W1cells on ECIS biochips were applicable
in real time cytotoxicity of nanoparticles such as silver, gold, single
walled carbon nanotubules and cadmium oxide. (Hondroulis et al.,
2010). Applications of RTgill-W1 cells in toxicology as well as in
the basic research arena were recently reviewed by Lee et al. (2009).

Here we demonstrate the potential for using ECIS technology
and RTgill-W1 cells that have been seeded on fluidic biochips as
a rapid screening test for potential chemical contaminants in
drinking water. The 18 chemicals selected for testing were those
recommended by an Army user group (van der Schalie et al.,
2006) based on the criteria that they represented different modes
of toxicity and had the potential to be water contaminants. The
RTgill-W1 cells have toxicant sensitivity that is comparable to
BLMVECs, while having culturing characteristics more suitable
than BLMVECs for water testing. Most notably, the RTgill-W1 cells
can survive for extended periods on fluidic biochips and still be
responsive to the benchmark toxicant, PCP, when used in the ECIS
assay. This long-term survival capability opens possibilities for low
cost, low maintenance field-portable biosensors.

2. Materials and methods

2.1. Seeding of fluidic biochips with RTgill-W1 cells

Sterile fluidic biochips (Fig. 1) used for these studies were
assembled at Applied BioPhysics, Troy, NY from two components;
an upper polycarbonate layer with two separate fluid channels,
and a lower electronic layer that contained four electrode pads
per channel for impedance sensing. There were 10 working elec-
trodes per pad; each electrode was 250 lm in diameter. The

assembled biochips had gold electrode connections for acquiring
impedance readings when inserted into the ECIS test unit, which
is described below. The biochips are commercially available from
Agave BioSystems, Austin, TX, and are described in detail by Curtis
et al. (2009b).

Rainbow trout gill epithelial (RTgill-W) cells, an immortalized
fish cell line, were obtained from American Type Tissue Culture
Collection, Manassas, VA (ATCC CRL-2523). The cells were cultured
in 75 cm2 polystyrene flasks in complete Leibovitz-15 (L-15) media
containing 10% fetal bovine serum (FBS) (v/v), 1% 200 mM Gluta-
MAX-1 supplement (v/v), and 100 U/mL penicillin and 100 U/mL
streptomycin (Lonza, Walkersville, MD) in a 20 �C incubator with
ambient carbon dioxide (CO2). The cells were used at passages 5–
55 for seeding the fluidic biochips.

Prior to being seeded with cells, the channels of the fluidic bio-
chips were coated with 0.01% fibronectin (Calbiochem, Gibbstown,
NJ) solution in L-15 media for 1 h in order to facilitate cell attach-
ment and the formation of a continuous epithelial monolayer. After
1 h incubation at room temperature, the fibronectin solution was
aspirated off and each biochip channel was seeded with 2.5 mL
of trypsinized cells (2.5 � 105 cells/mL). Sterile Pharmed� Biop-
harm tubing (McMaster-Carr, Santa Fe Springs, CA) was used to
form closed loops on the ends of the biochips (Fig. 1). Bare elec-
trodes that contained culture media and no cells had impedance
values of 300–400 ohms (X). Once the RTgill-W1 cells were intro-
duced to the fluidic biochip and a monolayer was formed, imped-
ance values ranged from approximately 1200–2000 X. Seeded
biochips were then incubated at 20 �C for 7 days. During this time,
the media in the fluidic channels was replenished on days 4 and 7
prior to storing the biochips at 6 �C on day 7.

Biochips were used at anywhere from 11 to 18 days post-
seeding for chemical testing. Several hundred biochips were
seeded and stored in this manner over the course of the testing
period for use in chemical testing.

Nine more biochips were seeded using the same procedure de-
scribed above for studying the effects of temperature on imped-
ance levels during long-term storage. These chips were not,
however, fed after seeding but rather went directly into a thermo-
electric unit as described in 2.6 below.

An additional 36 biochips were seeded with RTgill-W1 cells in
the same manner as the biochips for long-term storage chemical
testing with PCP. These biochips were held at 20 �C, received media
replenishments on days 4 and 7, and were then stored at 6 �C with
no further media replenishments or manipulation for the entire
storage period. Sets of three individual chips were removed from

Fig. 1. Fluidic ECIS biochip seeded with RTgill-W1 cells. Fluidic biochips are sealed
and able to be stored for over one year without feeding and maintenance.
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6 �C after 2, 3, 4, 8, 12, 16, 20, 24, 26, 28, 30 and 39 weeks of stor-
age, and were tested with 9.4 lM PCP as described in 2.7 below.

2.2. Seeding of fluidic biochips with BLMVEC cells

Seeding of the fluidic biochips with BLMVEC cells was described
previously (Curtis et al., 2009b). The BLMVECs and the MCDB-131C
complete media with 10% FBS for culture were obtained from VEC
Technologies (Rensselaer, NY). The cell culture flasks and fluidic
biochips were maintained in a 37 �C incubator with 5% CO2. The
BLMVECs were used for biochip seeding at passages 5–11
2.5 � 105 cells/mL. Unlike the RTgill-W1 cells, the BLMVEC cells
are a finite cell line and were not used for ECIS experiments beyond
passage 11. Prior to being seeded with cells, the channels of the flu-
idic biochips were coated with 0.2% gelatin solution in 0.15 M NaCl
for 1 h in order to facilitate cell attachment and the formation of a
continuous endothelial monolayer. Pharmed� Biopharm tubing
was used to form closed loops on the ends of these biochips in
the same manner as with the RTgill-W1 biochips. Cell monolayers
were allowed to grow on the biochips in a tissue culture incubator
for at least 7 days prior to being used for toxicity testing. Media
changes were done on the fluidic biochips three times a week un-
der sterile conditions, with the last media changes being com-
pleted 24 h prior to using the biochips for chemical testing.

2.3. Test chemicals – preparation and analysis

Eighteen chemicals were tested in the fluidic biochips using
ECIS. Chemical test concentration ranges (van der Schalie et al.,
2006) were selected to be at or above the Military Exposure Guide-
line (MEG) concentration (based on consumption of 15 L per day of
water for 7–14 days) (USAPHC, 2010) and at or below the esti-
mated Human Lethal Concentration (HLC; based on the consump-
tion of 15 L of water per day for a 70 kg person) (TERA, 2006). The
concept of MEG was used to provide a reference point above which
adverse health effects may be expected in deployed military per-
sonnel (USAPHC, 2010). The HLC concentrations were derived
based on data available on accidental human poisonings and
rodent LD50 data. Both the MEGs and HLCs are only available for

single compounds and not mixtures (van der Schalie et al., 2006).
Table 1 lists the MEG and HLC values for the test chemicals. Acry-
lonitrile, aldicarb, sodium arsenite, fenamiphos, methamidophos,
methyl parathion, nicotine, and paraquat dichloride were obtained
from Chem Service (West Chester, PA). Ammonium chloride, cop-
per sulfate, sodium cyanide, sodium fluoroacetate, mercuric chlo-
ride, sodium azide, phenol, thallium sulfate, and toluene were
obtained from Sigma–Aldrich (St. Louis, MO). Pentachlorophenol
was obtained from Mallinckrodt Baker (Phillipsburg, NJ).

Test compound stock solutions were prepared in deionized
water (DI) with the exception of sodium pentachlorophenate
(PCP), which was prepared from pentachlorophenol in 5 mM phos-
phate buffer, pH adjusted to 7.5. Stock concentrations of test com-
pounds were analyzed in-house using the following analytical
methods. Acrylonitrile, aldicarb, fluoroacetate, methyl parathion,
nicotine, paraquat, PCP, and phenol were analyzed by high perfor-
mance liquid chromatography (HPLC). Ammonia was measured
colorimetrically using a LaMotte 1200 Colorimeter (Chestertown,
MD). Arsenic, copper, mercury, and thallium were measured by
inductively coupled plasma-mass spectrophotometry (ICP-MS).
Fenamiphos and toluene were measured with a gas chromatograph
(GC). An ion probe was used to measure cyanide. Azide was mea-
sured using ion chromatography. Methamidophos was tested at
nominal concentrations because suitable methods for analysis
were not available. Volatile chemicals (acrylonitrile and toluene)
were stored in zero headspace vials at 4 �C. All test chemicals, ex-
cept azide, were verified previously as stable for two weeks (van
der Schalie et al., 2006). Azide stability testing was done by US Cen-
ter for Environmental Health Center chemists and was found to be
stable for at least 2 weeks (unpublished data). On the day of ECIS
testing, stock solutions of the selected compounds were diluted
with DI water to obtain desired concentrations.

2.4. Procedure for ECIS chemical testing with the RTgill-W1 fluidic
biochips

The protocol for toxicant testing of the fluidic biochips was
based upon the statistical approach used by the Joint Chemical Bio-
logical Radiological Agent Water Monitor (JCBRAWM) program for

Table 1
Toxicant sensitivity of fluidic biochips seeded with either BLMVEC or RTgill-W1 cell monolayers using ECIS. Target detection level was P the Military Exposure Guidelines (MEG)
and 6 Human Lethal Concentration (HLC) in 6one hour.

Compound Chemical Abstract Service (CAS) number MEGa (lM) HLCb (lM) BLMVEC detection level (lM) RTgill-W1 detection level (lM)

Acrylonitrile 107-13-1 8.85 79.1 3615.8 7627.1
Aldicarb 116-06-3 0.025 0.9 893.5 3484.5
Ammonia 7664-41-7 1762 54257 20786.8 5872.0
Arsenic (sodium arsenite) 7784-46-5 0.267 60.1 60.1 60.1
Azide (sodium) 26628-22-8 2.856 1111.4 not tested 285.6
Copper (sulfate) 7758-98-7 0.74 1621.0 786.9 15.7
Cyanide (sodium) 143-33-9 76.86 538.0 >538 538.0
Fenamiphos 22224-92-6 0.014 1.8 18.5 18.5
Fluoroacetate (sodium) 62-74-8 0.009 50.6 25792.2 6623.4
Mercury (chloride) 7487-94-7 0.050 123.1 24.9 1.2
Methamidophos 10265-92-6 0.002 9.9 3543.1 >7100.3
Methyl parathion 298-00-0 0.532 127.8 127.8 97.3
Nicotine 54-11-5 0.080 103.6 1035.6 >1615
Paraquat (dichloride) 1910-42-5 0.132 17.9 1944.2 1788.6
Pentachlorophenate

(sodium)
131-52-2 0.526 270.0 9.4 9.4

Phenol 108-95-2 29.76 972.3 972.3 3910.3
Thallium (sulfate) 7446-18-6 0.016 66.0 132.1 132.1
Toluene 108-88-3 100.9 9117.6 2713.6 1085.4
Chemicals detected 6 HLC using 16/16 biochips (more sensitive cell line in bold italics). 8/17 9/18
Chemicals detected > HLC using 3/3 biochips. 9/17 9/18
Total number of chemicals detected. 17/17 18/18

a Military Exposure Guidelines (MEG) concentration (based on consumption of 15 L per day of water for 7–14 days; USAPHC, 2010).
b Human Lethal Concentration (HLC) concentration (based on consumption of 15 L per day of water for a 70 kg person; TERA, 2006).
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determining a minimum detection limit (MDL) for each test chem-
ical. The MDL is the lowest tested concentration at which there is a
90% probability of detection with 80% confidence (Hogan et al.,
2007). Based on binomial probabilities, this required that a mini-
mum of 16 of 16 samples be detected with no false negatives.
Therefore, 16 out of 16 individual biochips had to respond to a
compound at the level being tested in order for the chemical to
be considered positive, or toxic. Selection of concentrations of test
chemicals for ECIS testing was established based on previous
range-finding tests done in our laboratory on all 18 chemicals.
The range-finding was done in a step-wise fashion with 3 out of
3 biochips having to respond to a chemical concentration in order
to establish the lowest level of response. If the level of response
was within the MEG and HLC, then this concentration level was
used to test 16 biochips and 16 out of 16 chips. If the level of re-
sponse was above the HLC, then the upper limits of response were
determined using 3 out of 3 chips.

Each fluidic biochip had two channels for testing; one channel
was used for a control, and the other for the test compound. The
results of previous ECIS open-well range find studies (unpublished
data, USACEHR) were used to determine the test concentrations.
All ECIS testing for the RTgill-W1 cells was done at 25 �C. L-15ex
powdered media with phenol red (Cat # L1501, US Biological,
Swampscott, MA) was used as the test media for both the control
and treatment injections. The L-15ex media recipe formulated by
Schirmer et al. (1997) has been used extensively for in vitro toxicity
assays with the RTgill-W1 cells for metals and poly aromatic
hydrocarbons (Schirmer et al., 1998, 2001; Dayeh et al., 2005a).
L-15ex is a modified version of L-15 media and contains the same
concentrations of salts, galactose, and pyruvate as basal L-15, but
no vitamins or amino acids. For ECIS testing purposes, a 2� solu-
tion of L-15ex was prepared with Millipore water. This was used
for both control (2� L-15ex diluted 1:1 with Millipore water)
and test media solutions (2� L-15ex diluted 1:1 with the desired
test chemical concentration). A pre-exposure period was initiated
by injecting each channel of the biochip with 10 mL of 25 �C
L-15ex control media over a one minute interval using a 10 mL syr-
inge. Since the media environment surrounding the monolayers of
RTgill-W1 cells within the biochips was being changed within the
biochips from complete growth media to test media, this pre-expo-
sure period allowed the impedance levels of the cells to reach equi-
librium before introducing the test compound. Each biochip was
then inserted into the 25 �C test unit (Fig. 2) and the ECIS software
was started to collect 30 min of pre-exposure data with one minute
readings immediately after the injections. The hardware and soft-
ware of the ECIS test unit were described previously (Curtis
et al., 2009b).

During the pre-exposure period, desired concentrations and
volumes of the test chemical were prepared in the 2� L-15ex med-
ia along with replicate control solutions and equilibrated to 25 �C.
Inclusion of the pH indicator phenol red in the media facilitated vi-
sual comparisons between the color of the control and test sam-
ples. Differences in pH that were greater than 0.20 pH units
caused changes in media color that could be detected visually. In
these instances, test samples were adjusted with 20% HCl or
1.0 N NaOH until the pH of the test sample was the same visually
as the control sample to ensure ECIS responses were due to chem-
ical toxicity and not pH shifts.

At the end of the 30 min pre-exposure, one channel of each of
the biochips was injected with 10 mL of control media, and the
other channel was injected with 10 mL of test media solutions. This
was done while the biochips were in place in the test unit and
impedance data was still being collected (Fig. 2). The ECIS software
continuously collected the average raw impedance values from
each of the four electrode pads in each channel every 60 s. The data
was normalized and displayed on the ECIS reader monitor as a

real-time graph. Since there was a range of starting impedance val-
ues on each electrode due to variability of the cell layers covering
the electrodes, normalizing the data allowed for a more uniform
comparison of the impedance values between the electrodes, and
subsequently, between experiments. The normalized impedance
values at each time point were calculated by dividing by the initial
impedance values just prior to the exposure period on each elec-
trode. After one, four, and eight hours of exposure, the impedance
data was analyzed using the curve discrimination software to com-
pare differences between the control channels and the treated
channels (see Section 2.8 analysis, below).

2.5. Procedure for ECIS chemical testing with the BLMVEC fluidic
biochips

The procedure for ECIS chemical testing with the BLMVEC flu-
idic biochips was described in detail in Curtis et al. (2009b). The
procedure was similar to the testing done with the RTgill-W1 bio-
chips; the main differences were use of a 37 �C testing temperature
because the BLMVECs are mammalian cells, a 60 min pre-exposure
period instead of 30 min, 5 mL injection volumes instead of 10 mL,
and the use of a different test media. The BLMVEC testing was done
using powdered serum-free MCDB-131 (Sigma–Aldrich, St. Louis,
MO) with added sodium bicarbonate as the test media for both
the control and treatment injections. A pre-exposure period was
initiated by injecting each channel of the biochip with 5 mL of
pre-warmed 37 �C MCDB-131 control media using a 5 mL syringe
over a one minute period. Each biochip was then inserted into
the test unit and the ECIS software was started to collect 60 min
of pre-exposure data with one minute readings. The raw imped-
ance values of the confluent biochips ranged from approximately

Fig. 2. Multiple fluidic biochips inserted into the multichip reader test unit for 1 h
exposure testing. The picture depicts a manual exposure injection with attached
syringes of control and test samples in L-15ex media.
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1800–2000 X. At the end of the 60 min pre-exposure, one channel
of each of the biochips was injected with 5 mL of control media,
and the other channel was injected with 5 mL of test compound.
This was done while the biochips were in place in the test unit
and impedance data was still being collected. Collection and statis-
tical analysis of ECIS data was the same as described for the RTgill-
W1 biochips.

2.6. Effects of temperature on long-term storage impedance levels of
RTgill-W1 fluidic biochips

To determine the length of cell viability at temperatures above
6 �C, nine fluidic biochips seeded with RTgill-W1 cells were placed
in a thermoelectric ECIS unit where impedance values were re-
corded every hour for up to 20 weeks. Three biochips each were
held at 12, 20, and 25 �C. No media replenishments were done on
the biochips. Viability of the cell monolayer was determined by
monitoring impedance readings over the specified time period. An-
other set of 36 fluidic biochips were also seeded with RTgill-W1
cells and placed at 6 �C with no media replenishments, and imped-
ance readings were taken from three biochips over the course of
78 weeks at 2,3, 4, 8, 12.16, 20, 24, 32 38, 52, and 78 weeks.

2.7. Long Term Storage PCP Evaluations of RTgill-W1 fluidic biochips

In order to study the effects of cold storage with no media
replenishment on the viability and sensitivity of the RTgill-W1
cells, fluidic biochips were initially seeded, held at 20 �C, and had
media changes on days 4 and 7 as described above. The biochips
were then held at 6 �C with no media replenishment for up to
39 weeks. Three biochips were removed for viability assessment
and ECIS testing using the 9.4 lM detection level for PCP (Table 1)
at 2,3,4,8,12,16,20,24,26,28,30 and 39 weeks using the chemical
exposure procedure described above. PCP was selected as the
benchmark toxicant due to its chemical stability, relative ease of
analysis, and because changes in cellular impedance in response
to PCP were very reproducible.

To verify RTgill-W1 cell viability after long-term storage, a live/
dead cell stain was done on 39 week-old fluidic biochips after PCP
exposures using a Live/Dead Viability Cytotoxicity Kit ™ (Invitro-
gen, Carlsbad, CA). The chips were flushed with 5 mLs of phosphate
buffered saline (PBS) per channel and then flushed with 5 mLs per
channel of 4 lM ethidium homodimer-1 and 2 lM calcien AM that
was prepared in PBS, and incubated for 30 min. Fluorescent photo-
micrographs were taken using a Nikon Ti-S Eclipse with a CFI Plan
Fluor DLL 10X NA 0.3 WD 16 mm phase contrast objective and Ni-
kon C-FL B-2E/C fluorescein isothiocyanate and C-FL Y-2E/C Texas
Red filters.

2.8. Statistical analysis

Previous work by Curtis et al. (2009b) describes a method for
determining the statistical significance of the impedance response
of an individual fluidic biochip to an unknown water sample. Each
biochip contains a control and a treatment channel, and these
impedance responses were statistically compared to a known data-
base of control exposed fluidic biochips. The method developed by
Dr. Steve Schwager of Cornell University using MATLAB (The Math-
Works, Inc., Natick, MA) was incorporated into a curve discrimina-
tion program software package. The program was used to analyze
the fluidic biochip impedance responses and is described in detail
by Curtis et al. (2009b). A total of 107 individual RTgill-W1 and 53
BLMVEC control water exposed fluidic biochips were used in the
respective control models for the curve discrimination analysis. A
confidence level of 99.9% (p < 0.001) was used to establish statisti-
cal significance. Functional data analysis techniques (Ramsay and

Silverman, 2005) were used to extend the standard single time
point analysis of variance approach (Ott and Longnecker, 2000)
to a curve consisting of approximately 60 points. If at least ten con-
secutive time intervals over a 60 min period were statistically dif-
ferent from the control model then an individual chip response
was considered positive.

3. Results

3.1. Toxicity Testing of BLMVEC and RTgill-W1 fluidic biochips

Table 1 compares and summarizes the ECIS toxicity test results
for both the RTgill-W1 and the BLMVEC seeded fluidic biochips.
With the RTgill-W1 biochips, toxicity was detected for 9 of the
18 test chemicals after a one hour exposure at concentrations that
were greater than or equal to the MEG, and less than or equal to the
HLC. These chemicals were ammonia, arsenic, azide, copper, cya-
nide, mercury, methyl parathion, pentachlorophenate, and toluene.
All of these compounds caused a significant decrease (p < 0.001) in
impedance in 16 out of 16 biochips at the levels shown as com-
pared to controls, with the exception of copper, which caused an
increased impedance compared to the controls. Acrylonitrile, aldi-
carb, fenamiphos, fluoroacetate, methamidophos, nicotine, para-
quat, phenol, and thallium were detected in 3 out of 3 biochips,
but at levels above the HLC.

With the BLMVEC biochips, toxicity was detected for 8 of 17
tested chemicals after one hour of exposure at concentrations that
were greater than or equal to the MEG, and less than or equal to the
HLC. The chemicals detected within these ranges were the same as
those detected with the RTgill-W1 cells, with the exception of cya-
nide, which the RTgill-W1 cells detected, but the BLMVECs did not.
The BLMVECs also detected phenol, while the RTgill-W1 cells did
not. Azide was not tested with the BLMVECs. The BLMVECs re-
sponded to acrylonitrile, aldicarb, cyanide, fenamiphos, flouroace-
tate, methamidophos, nicotine, paraquat, and thallium in 3 of 3
biochips, but at levels that were above the HLC. In summary, both
cell lines were equally sensitive to arsenic, fenamiphos, pentachlo-
rophenate, and thallium. The BLMVECs were able to detect acrylo-
nitrile, aldicarb, methamidophos, nicotine and phenol at lower
concentrations than the RTgill-W1 cells. The RTgill-W1 cells, how-
ever, were more sensitive to ammonia, copper, cyanide, mercury,
fluoroacetate, methyl parathion, and toluene. A representative
graph of normalized average impedance responses of BLMVEC
and RTgill-W1 cells to a one hour exposure to control water and
60.1 lM arsenic (sodium arsenite) is shown in Fig. 3. Both cell lines
had significant ECIS responses (p < 0.001) to arsenic, but the pat-
terns of response were different. Sixteen out of 16 biochips were
tested for control and aresenic exposures for each cell line. The
BLMVECs typically had an inital spike in impedance levels immedi-
ately after the injection of the test media. This occured in both the
control and treatment channels of the biochip subsequent to the
one hour pre-exposure of both channels to the serum-free media.
The RTgill-W1 cells typically did not have an initial spike in imped-
ance levels after either the control or treatment injections. Both
cell lines were able to detect arsenic with equal sensitivity, as evi-
denced by decreased impedance. The RTgill-W1 cell monolayers,
however, appear to be less responsive to disturbances related to
control media injections.

3.2. Effects of temperature on long term storage of RTgill-W1 fluidic
biochips

As stated previously, fluidic biochips that contained media but
no cells had raw impedance values ranging from 300 to 400 X.
Once a cell monolayer had been established on the biochips, the
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impedance values for RTgill-W1 cells ranged from 1200 to 2000 X
when stored at 20 �C, which is the ATCC-recommended culture
temperature for the RTgill-W1 cells. When impedance values ap-
proached 500 X, it was visually observed that the cells had become
detached from the electrodes and the monolayer was no longer
viable. As can be seen in Fig. 4, these biochips maintained a viable
monolayer of cells for over 16 weeks without media renewal. Bio-
chips held at 6 �C without media replenishment maintained high
impedances even after 78 weeks of storage, with impedance levels
increasing to �2400 X at 8 and 52 weeks. A similar bimodal pat-
tern of changing impedance levels can be seen at 12, and 20 �C.
Impedance levels at 12 �C were also higher than 20 �C impedances
and remained viable for over 20 weeks. A storage temperature of
25� led to decreased impedance and a shelf life of less than

4 weeks. At 30 �C, RTgill-W1 seeded fluidic biochips were viable
for less than 24 h (data not shown).

3.3. Long Term Storage PCP Evaluations of RTgill-W1 fluidic biochips

In order for the RTgill-W1 cells to be useful in biosensors for
field toxicity tests, it is essential that cell monolayers on the fluidic
biochips respond to toxic insult after prolonged storage. Fig. 5 illus-
trates the toxicity responses as the average normalized impedance
difference between the control and treatment channels of fluidic
biochips that were stored at 6 �C. Three individual biochips were
tested at each time point. The cells responded significantly
(p < 0.001) to a one hour 9.4 lM PCP exposure at all the time points
indicated (2, 3, 4, 8, 12, 16, 20, 24, 26, 28, 30 and 39 weeks of
storage).

An example of the graphic impedance responses of the one of
the 39 week-old biochips is illustrated in Fig. 6, as well as the cor-
responding live/dead stain photomicrographs of the same chip. In
Fig. 6A, the ECIS response of the RTgill-W1 cells to 9.4 lM PCP
was significant (p < 0.001) within one hour of exposure. The black
lines on the graphs represent the control channel normalized
impedance responses, and the red lines represent the PCP channel
normalized. Starting impedance values on the biochip ranged from
1636–1914 X, which, in our experience, was indicative of an intact
monolayer of RTgill-W1 cells. Fig. 6B and C are photomicrographs
of the resultant live/dead stains of representative sections of the
control channel and PCP-treated channels, respectively. Live cells
stain green, while the nuclei of dead cells stain red.

4. Discussion

One of the objectives of this research was to optimize storage
conditions for cell monolayers on a fluidic biochip to produce a
potentially field-portable biosensor that required little or no main-
tenance. Preliminary observations in our laboratory indicated that
the RTgill-W1 cell line could withstand long-term storage in refrig-
erated temperatures, which was not achievable with mammalian
lines requiring frequent media renewal in addition to 37 �C storage
temperatures (Curtis et al., 2009b). It is well known that fish can
withstand relatively long periods of starvation without severe
consequences, and water temperature influences long-term fish
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survival by altering their metabolism. Rainbow trout, Oncorhyn-
chus mykiss, have been shown to survive in waters between 0
and 29.8 �C, dependent upon on temperature adaptation and fish
strain (Currie et al., 1998). Consequently, the ability of the RTgill-
W1 cells to survive for 78 weeks at 6 �C on a biochip with no media
replenishments is not surprising for a cell line derived from fish
that thrive in cold waters. This observation is not unique to RTg-
ill-W1 cells; RTG-2, a rainbow trout gonad-derived cell line, was
reported to retain cellular viability for up to 2 years at 4 �C without
media changes (Wolf and Mann, 1980), and was reported to sur-
vive at 0 �C for 28 days with little change in cell number (Mosser
et al., 1986). Another salmonid cell line, CHSE-sp, a subline of Chi-
nook salmon embryo cells, was also shown to maintain viability
and retain the ability to support viral growth at 4 �C for 6 months
(Araki et al., 1994). Since the intrinsic physiology of a poikilother-
mic organism, such as the rainbow trout, allows these organisms to
survive at relatively low ambient temperatures in vivo, we theo-
rized that extended low temperature survival might be possible
for cells derived from such organisms. The impedance data shown
in Fig. 4 supports this hypothesis, demonstrating that the RTgill-
W1 cells could be maintained at reduced temperatures for ex-
tended periods of time without feeding or maintenance. In fact,
there was an increase in the shelf-life of the seeded biochips stored
at decreased temperatures. Decreasing the storage temperature to
values below the recommended culture temperature of 20 �C pro-
vided two distinct advantages for long-term biosensor develop-
ment. First, the shelf-life of the biochips increased to over
20 weeks when held at 12 �C, and to 78 weeks when held at 6 �C.
Second, an overall increase in monolayer impedance was observed
at the 12 and 6 �C storage temperatures as compared to biochips
held at 20 and 25 �C. The reason for the increased impedance levels
during storage time still needs further investigation, but it is well
known that cell membrane fluidity decreases with decreasing tem-
peratures (Los and Murata, 2004). These changes in membrane flu-
idity can cause a signaling event in which cold inducible proteins
may become expressed, which in turn, regulate cell metabolism
so that the cells can survive at colder temperatures (Guschina
and Harwood, 2006). Cell membrane lipids of poikilothermic

organisms are modified in vivo in order for the fish to survive tem-
perature extremes (Guschina and Harwood, 2006). The increased
monolayer impedance observed at colder temperatures with the
RTgill-W1 cells in this paper may be related to these cellular adap-
tation mechanisms.

One interesting observation from this data is the bimodal pat-
tern of rising and declining impedance levels that was recorded
over time for all storage temperatures. Natural biological oscilla-
tions have been noted in many life forms, mostly in response to
endogenous, and sometimes rhythmic, metabolic cycling that is
not well understood (Tu and McKnight, 2006). Schweizer et al.
(2011) noted that in rainbow trout liver cells, calcium oscillations
were present in 40% of the cells that were unrelated to ATP concen-
trations, indicating that these cells have some endogenous meta-
bolic rhythm. The replication of these impedance level patterns
at all four storage temperatures in the RTgill-W1 cells in this paper
seems to indicate that the effect may be linked to the metabolic
machinery of the cells, which is reduced at lower temperatures.

Although the chemical sensitivity of the BLMVEC mammalian
cell culture was comparable to that of the RTgill-W1 fish cell line
when using ECIS as the indicator of toxicity, the overall advantages
of using the fish cell line for water supply testing becomes evident
when considering the maintenance and storage of the cells on the
fluidic biochips. As shown here, the fluidic biochips seeded with
RTgill-W1 cells were able to maintain a confluent monolayer for
78 weeks when stored at 6 �C without media replenishment and
were still responsive to the benchmark toxicant, PCP, when used
in the ECIS assay. In contrast, BLMVEC cells were viable for at least
16 weeks when stored on the biochips in a 37 �C incubator, but the
media on the biochips had to be replenished three times per week
(Curtis et al., 2009b). The sensitivity of the BLMVECs to challenges
of 38 lM PCP in ECIS assays also decreased over the 16 week per-
iod. The BLMVEC ECIS toxicity sensor (Curtis et al., 2009b) was con-
siderably larger and heavier than the current ECIS sensor that is
described here and was not very practical for field use, especially
when combined with the complexity of the automated cell mainte-
nance system that was required for media replenishment of to feed
the mammalian cells on the biochips. Using the RTgill-W1 cells
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allowed us to design a toxicity sensor that was more compact since
the cell maintenance system was no longer needed. Research with
the RTgill-W1 cells on the fluidic biochips is continuing to deter-
mine the maximum shelf-life of these biochips at 6 �C and to fur-
ther elucidate why there are cycles in the impedance values of
the stored biochips over time.

Portable ECIS readers are currently being developed by Biosen-
tinel, Inc. (Austin, TX) for use in field situations (Fig. 7). These por-
table readers are being designed for hand-held operation and to
withstand the rigors of field use. The RTgill-W1 fluidic biochips
that have been developed in parallel with the ECIS reader show
great promise as field-portable biosensors for broad-based screen-
ing of drinking water supplies because of their rapid response (less
than one hour) and sensitivity to chemicals, combined with their
low maintenance and long-term cold storage capabilities. For the
testing of drinking water for Army purposes, this biosensor is in-
tended for use as a screening device to be used in conjunction with
other complementary field water testing devices.

Broad spectrum chemical water screening biosensors, such as
the RTgill-W1 fluidic biochips described here, are invaluable in
the field as first-alerts to potential contamination of drinking water

that may warrant further investigation and analysis. Although one
could argue that only single compounds were tested with this

Fig. 6. Top: (A) Normalized impedance response of RTgill-W1 fluidic biochip maintained at 6 �C with no media replenishments for 39 weeks, and then exposed to 9.4 lM PCP.
Thick black lines depict control channel average withstandard error of mean and individual control electrodes (thin black lines). Thick red lines depict PCP channel average
with standard error of mean and individual control electrodes (thin red lines). Starting impedances ranged from 1636 to 1914 ohms and significant differences (p < 0.001)
between control and treatment channels were detected using the curve discrimination program. (B) and (C) Bottom: Live/Dead Cell Stain of monolayers of Rtgill-W1 cells
within the channels of the fluidic biochip after control and PCP exposures. (B) depicts control channel and (C) depicts PCP exposed channel. Live cells are shown in green
(2 lM calcein AM) and dead cells in red (4 lM ethidium homodimer-1). Live/dead images demonstrate that the majority of cells are living and an intact monolayer exists,
which correlates with the high impedance measurements recorded.

Fig. 7. Biosentinel prototype portable ECIS fluidic biochip reader, showing fluidic
biochip insertion. The portable reader includes battery operation, touch screen
display, and built in temperature control for field analysis of water samples.
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biosensor and the most likely scenario encountered under realistic
environmental conditions will be mixtures, the lack of human tox-
icity data for mixture scenarios makes this data difficult to inter-
pret. There are few, if any, benchmarks (such as the MEG and
HLC) available for chemical mixtures in regards to human health
effects. Broad spectrum rapid toxicity sensors, such as the RTgill-
W1 fluidic biochips, that are becoming available available for test-
ing drinking water under field use conditions, will provide rapid
rapid information as to the to the potential safety of a drinking
water supply.

As stated earlier in this paper, there are a variety of chemical
toxicity sensors available, but these are analyte-specific. The RTg-
ill-W1 biochips, however, are designed as a screening tool to rap-
idly respond to the presence of chemicals, either alone or as
mixtures, which may be present in the drinking water. The
strength of this biosensor is that not only does it respond to spe-
cific chemicals in the water at levels that are relevant to human
health, as defined in this paper, but it also has the potential to re-
spond to a much larger set of chemicals with similar toxicological
properties. Work is on-going to explore the feasibility of using
additional cell lines and methods for storing the seeded biochips
to prolong the lifespan of the biochips without reducing chemical
sensitivity. Improvements to the portable ECIS hand-held reader
are also on-going.
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